Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309924

RESUMO

This study aimed to assess the nutritional quality and digestibility of proteins in two red seaweed species, Gelidium corneum and Gracilaropsis longissima, through the application of in vitro gastrointestinal digestions, and evaluate the impact of two consecutive processing steps, extrusion and compression moulding, to produce food snacks. The protein content in both seaweeds was approximately 16 %, being primarily located within the cell walls. Both species exhibited similar amino acid profiles, with aspartic and glutamic acid being most abundant. However, processing impacted their amino acid profiles, leading to a significant decrease in labile amino acids like lysine. Nevertheless, essential amino acids constituted 35-36 % of the total in the native seaweeds and their processed products. Although the protein digestibility in both seaweed species was relatively low (<60 %), processing, particularly extrusion, enhanced it by approximately 10 %. Interestingly, the effect of the different processing steps on the digestibility varied between the two species. This difference was mainly attributed to compositional and structural differences. G. corneum exhibited increased digestibility with each processing step, while G. longissima reached maximum digestibility after extrusion. Notably, changes in the amino acid profiles of the processed products affected adversely the protein nutritional quality, with lysine becoming the limiting amino acid. These findings provide the basis for developing strategies to enhance protein quality in these seaweed species, thereby facilitating high-quality food production with potential applications in the food industry.


Assuntos
60578 , Lisina , Rodófitas , Alga Marinha , Digestão , Proteínas , Aminoácidos/química , Parede Celular/metabolismo , Alga Marinha/química
2.
Food Chem ; 440: 138241, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141439

RESUMO

This study aimed to examine the composition and properties of the invasive macroalgae R. okamurae and explore potential applications. The results showed that the seaweed biomass is mainly composed of structural carbohydrates, with alginate being the main constituent, accounting for 32 % of its total composition and with a mannuronic and guluronic acid ratio (M/G) ratio of 0.93. It also has a relatively high concentration of fucose, related to the presence of fucoidans that have important biological functions. Among the mineral contents, a high magnesium and calcium (7107 and 5504 mg/kg) concentration, and the presence of heavy metals above legislated thresholds, were notable. R. okamurae also contained a high lipid content of 17 %, mainly composed of saturated fatty acids, but with a significant fraction of n3 polyunsaturated fatty acids (18 %) resulting in a low n6/n3 ratio (0.31), that has health benefits. The protein content of R. okamurae was 12 %, with high-quality proteins, as essential amino acids (mainly leucine, phenylalanine and valine) constitute 32 % of the total amino acids. It also showed a high polyphenol content and outstanding antioxidant properties (106.88 mg TE/g). Based on these findings, R. okamurae has significant potential as a sustainable source of bioactive compounds that can add value to different sectors, including food, feed, pharmaceuticals and cosmetics.


Assuntos
Feófitas , Alga Marinha , Alga Marinha/química , Biomassa , Ácidos Graxos/metabolismo , Proteínas/metabolismo
3.
Colloids Surf B Biointerfaces ; 227: 113349, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207385

RESUMO

The present work aimed at studying the in vitro digestion fate of κ-carrageenan (KC) or agar (AG) emulsion gels (EG), and KC oil-filled aerogels (OAG) in terms of their structural changes, lipolysis kinetics and curcumin bioaccessibility. On the one hand, both EG and aerogels showed large (70-200 µm) and heterogeneous particles after gastric conditions, indicating the release of bulk oil and gelled material. Nonetheless, this material release in the stomach phase was lower in the case of EG-AG and OAG-KC compared to EG-KC. After small intestinal conditions, EG and oil-filled aerogels presented a wide range of particle sizes probably due to the presence of undigested lipid material, gelled structures, as well as lipid digestion products. For the most part, adding curcumin to the structures' lipid phase did not cause of the structural modifications that occurred at the different in vitro digestion phases. On the other hand, the lipolysis kinetics was different depending on the type of structure. Amongst emulsion-gels, those formulated with κ-carrageenan presented a slower and lower lipolysis kinetics compared to those formulated with agar, which could be attributed to their higher initial hardness. Overall, the addition of curcumin in the lipid phase decreased the lipolysis in all the structures, which evidenced its interference in the lipid digestion process. The curcumin bioaccessibility reached high values (≈ 100 %) for all the studied structures, presenting a high solubility in intestinal fluids. This work unravels the implications of microstructural changes of emulsion-gels and oil-filled aerogels during digestion and their impact on their digestibility and subsequent functionality.


Assuntos
Curcumina , Curcumina/química , Emulsões/química , Carragenina , Ágar , Polissacarídeos , Lipídeos/química , Digestão , Géis , Tamanho da Partícula
4.
Food Res Int ; 169: 112862, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37254436

RESUMO

This work reports on the nanostructural changes taking place during the in vitro gastrointestinal digestion of polysaccharide-casein gel-like structures through the use of small angle X-ray scattering (SAXS). The results indicated that during the gastric phase, the hydrolysis of casein led to a swelling of the micellar structure, yielding peptide clusters. The presence of sulphated polysaccharides such as agar and κ-carrageenan was seen to limit the hydrolysis of casein during the gastric phase, hence decreasing the size of the formed clusters. After the intestinal phase, the produced peptidic fragments appeared to interact with the bile salts present in the digestion medium, yielding a mixture of bile salt lamellae/micelles and vesicular structures. However, in the presence of polysaccharides, which can interact with bile salts, the formation of vesicular structures was limited. Interestingly, the inclusion of casein within hybrid gel-like structures led to the formation of strong polysaccharide-protein interactions, especially in the case of κ-carrageenan. As a result, in some of the formulations, polysaccharide-peptide complexes were released towards the liquid medium, which formed larger vesicular structures. This was related to the greater protective effect of these particular gel-like structures. Furthermore, κ-carrageenan hindered the formation of bile salt lamellae/micelles. These results are of high relevance to understand the intestinal transport mechanism of the digestion products from protein-based ingredients and will allow a rational design of novel products with optimum nutritional and functional properties.


Assuntos
Caseínas , Micelas , Ácidos e Sais Biliares , Carragenina , Caseínas/química , Digestão , Polissacarídeos , Espalhamento a Baixo Ângulo , Difração de Raios X , Humanos
5.
Nutrients ; 15(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111177

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver alteration whose prevalence is increasing in Western countries. Microalgae and macroalgae have attracted great interest due to the high content in bioactive compounds with beneficial effects on health. The aim of the present study is to assess the potential interest of extracts rich in proteins obtained from the microalgae Chlorella vulgaris and Nannochloropsis gaditana and the macroalga Gracilaria vermiculophylla in the prevention of lipid accumulation in AML-12 hepatocytes. Toxicity was not observed at any of the tested doses. Both microalgae and the macroalga were effective in preventing triglyceride accumulation, with Nannochloropsis gaditana being the most effective one. Although the three algae extracts were able to increase different catabolic pathways involved in triglyceride metabolism, the mechanisms underlying the anti-steatotic effect were different in each algae extract. In conclusion, the present study demonstrates that Chlorella vulgaris, Nannochloropsis gaditana and Gracilaria vermiculophylla extracts are able to partially prevent the accumulation of triglycerides induced by palmitic acid in cultured hepatocytes, a model used to mimic the steatosis induced in liver by dietary patterns rich in saturated fat.


Assuntos
Chlorella vulgaris , Gracilaria , Leucemia Mieloide Aguda , Microalgas , Hepatopatia Gordurosa não Alcoólica , Estramenópilas , Humanos , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Triglicerídeos/metabolismo
6.
Carbohydr Polym ; 299: 120175, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876790

RESUMO

The effects of the high hydrostatic pressure (HPP) pre-treatment on the alginate extraction were seen to greatly depend on the recalcitrant nature of two algae species. Alginates were deeply characterized in terms of composition, structure (HPAEC-PAD, FTIR, NMR, SEC-MALS), functional and technological properties. The pre-treatment significantly increased the alginate yield in the less recalcitrant A. nodosum (AHP) also favoring the extraction of sulphated fucoidan/fucan structures and polyphenols. Although the molecular weight was significantly lower in AHP samples, neither the M/G ratio nor the M and G sequences were modified. In contrast, a lower increase in alginate extraction yield was observed for the more recalcitrant S. latissima after the HPP pre-treatment (SHP), but it significantly affected the M/G values of the resulting extract. The gelling properties of the alginate extracts were also explored by external gelation in CaCl2 solutions. The mechanical strength and nanostructure of the hydrogel beads prepared were determined using compression tests, synchrotron small angle X-ray scattering (SAXS), and cryo-scanning electron microscopy (Cryo-SEM). Interestingly, the application of HPP significantly improved the gel strength of SHP, in agreement with the lower M/G values and the stiffer rod-like conformation obtained for these samples.


Assuntos
Alginatos , Pressão Hidrostática , Espalhamento a Baixo Ângulo , Difração de Raios X , Microscopia Crioeletrônica
7.
J Sci Food Agric ; 103(6): 3194-3204, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36534030

RESUMO

BACKGROUND: The physicochemical and functional properties of pectin (JFP) extracted from edible portions (including pericarp and seed) of raw jackfruit (an underutilized tropical fruit) at four different maturity stages (referred to as stages I, II, III, and IV) were characterized in terms of extraction yields, chemical composition, molecular weight, and antioxidant properties to evaluate its potential use in foods. RESULT: The JFP yield increased from 9.7% to 21.5% with fruit maturity, accompanied by an increase in the galacturonic acid content (50.1%, 57.1%, 63.6%, and 65.2%) for stages I-IV respectively. The molecular weight increased from 147 kDa in stage I to 169 kDa in stage III, but decreased to 114 kDa in stage IV, probably due to cell-wall degradation during maturation. The JFP was of the high methoxyl type and the degree of esterification increased from 65% to 87% with fruit maturity. The functional properties of JFP were similar to or better than those reported for commercial apple pectin, thus highlighting its potential as a food additive. Although the phenolics and flavonoids content of JFP decreased with fruit maturity, their antioxidant capacity increased, which may be correlated with the increased content of galacturonic acid upon fruit development. Gels prepared from JFP showed viscoelastic behavior. Depending on the maturity stage in which they were obtained, different gelation behavior was seen. CONCLUSION: The study confirmed the potential of pectin extracted from edible parts of jackfruit as a promising source of high-quality gelling pectin with antioxidant properties, for food applications. © 2022 Society of Chemical Industry.


Assuntos
Artocarpus , Pectinas , Pectinas/química , Artocarpus/química , Antioxidantes/análise , Frutas/química
8.
Food Chem ; 387: 132877, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35397271

RESUMO

Agar and κ-carrageenan emulsion gels and oil-filled aerogels were investigated as curcumin carriers and their structure and mechanical properties, as well as their structural changes upon in vitro gastrointestinal digestion were characterized. Agar emulsion gels presented stiffer behaviour, with smaller and more homogeneous oil droplets (ϕ âˆ¼ 12 µm) than those from κ-carrageenan (ϕ âˆ¼ 243 µm). The structure of κ-carrageenan gels was characterized by the presence of rigid swollen linear chains, while agar produced more branched networks. After simulated gastrointestinal digestion bile salt lamellae/micelles (∼5 nm) and larger vesicles of partially digested oil (Rg âˆ¼ 20-50 nm) were the predominant structures, being their proportion dependent of the polysaccharide type and the physical state of the gel network. The presence of curcumin induced the formation of larger vesicles and limited the formation of mixed lamellae/micelles.


Assuntos
Curcumina , Ágar/química , Carragenina , Curcumina/química , Digestão , Emulsões/química , Géis/química , Micelas
9.
Int J Biol Macromol ; 185: 654-663, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34216665

RESUMO

Posidonia oceanica waste biomass has been valorized to develop bioactive multifunctional cellulosic aerogels (HCAG) by simpler and greener protocols. Hydrophobization of cellulosic aerogels was achieved through PLA coating, while bioactivity was imparted by the incorporation of hydrophilic (E2) and hydrophobic extracts (E3) produced from the same biomass. The incorporation of extracts led to denser aerogels, with less porous structures. These aerogels showed outstanding water and oil sorption capacities (1500-1900%), being able to release the adsorbed liquid almost completely after 7 days. Interestingly, all the aerogels showed a positive inhibition effect (23-91%) on the ß-carotene bleaching assay. Moreover, the aerogels loaded with extracts, especially when combining E2 and E3, were able to reduce the oxidation of lipids and oxymyoglobin in red meat after 10 days of storage. This evidences the potential of these multifunctional aerogels as bioactive adsorbing pads to preserve the quality of fresh packaged foods.


Assuntos
Alismatales/química , Antioxidantes/química , Celulose/química , Conservação de Alimentos/métodos , Adsorção , Biomassa , Liofilização , Géis , Água/química
10.
Curr Res Food Sci ; 4: 354-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34142096

RESUMO

The bioactivity and gelling properties of a carbohydrate-rich algal extract obtained from locally harvested Ascophyllum nodosum seaweed using a chemical-free approach were investigated for its potential interest in food applications. Physicochemical characterisation and compositional analysis of the extract, using FTIR, biochemical methods and monosaccharide analysis, confirmed the presence of alginates and fucoidans, although the main polysaccharide present in it was laminarin. Significant amounts of phenolic compounds (~9 â€‹mg phloroglucinol/100 â€‹mg sample) were also detected. As a result, the extract exhibited good antioxidant activity. It also showed promising prebiotic potential, promoting the growth of beneficial Lactobacillus sp. and Bifidobacteria sp. when compared with commercial prebiotics, but not that of pathogenic bacteria such as E. coli or P. aeruginosa. The gelling properties of the raw extract were explored to optimize hydrogel bead formation by external gelation in CaCl2 solutions. This was enhanced at neutral to alkaline pHs and high extract and CaCl2 concentrations. The mechanical strength, nano- and microstructure of the hydrogel beads prepared under optimised conditions were determined using compression tests, synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) and scanning electron microscopy (SEM). It was concluded that the raw algal extract at neutral pH had potential for use as a gelling agent, although further enrichment with alginate improved the mechanical properties of the obtained gels. The advantages and disadvantages of applying the non-purified algal extract in comparison with purified carbohydrates are discussed.

11.
Carbohydr Polym ; 256: 117496, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483023

RESUMO

Formulations based on agar and κ-carrageenan were investigated for the production of emulsion gels applicable as tissue mimicking phantoms. The effects of the polysaccharide matrix, the oil content and the presence of surfactants on the micro-/nanostructure, rheology, and mechanical and dielectric properties were investigated. Results showed a high capacity of the agar to stabilize oil droplets, producing gels with smaller (10-21 µm) and more uniform oil droplets. The addition of surfactants allowed increasing the oil content and reduced the gel strength and stiffness down to 57 % and 34 %, respectively. The permittivity and conductivity of the gels were reduced by increasing the oil content, especially in the agar gels (18.8 and 0.05 S/m, respectively), producing materials with dielectric properties similar to those of low-water content tissues. These results evidence the suitability of these polysaccharides to design a variety of tissue mimicking phantoms with a broad range of mechanical and dielectric properties.


Assuntos
Ágar/química , Carragenina/química , Polissacarídeos/química , Alga Marinha/química , Emulsões , Géis , Íons , Microscopia Confocal , Óleos , Oscilometria , Imagens de Fantasmas , Reologia , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Estresse Mecânico , Tensoativos/química , Temperatura , Raios X
12.
Int J Biol Macromol ; 165(Pt A): 1540-1551, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33022351

RESUMO

This work reports on the valorization of Tempranillo vine shoots for the development of bio-based packaging materials. Cellulose (F3) and nanocellulose (NANO F3) were produced by the conventional method, while less purified cellulosic fractions (F2A) and nanocrystals (NANO F2A) were extracted by simplified protocols (omitting Soxhlet and alkaline treatments) to reduce production costs and environmental impact and evaluate the potential added functionalities of these less purified materials. Although most of the hemicelluloses in F2A were digested upon acid hydrolysis, a small fraction remained in NANO F2A. On the other hand, the presence of a minor xylan fraction in F3 limited the access of sulphuric acid towards the cellulose microfibrils, hindering hydrolysis and producing heterogeneous fibrillar structures in NANO F3. The obtained materials were used to produce cellulosic films, as well as blends with agar, and their performance properties were evaluated. Overall, NANO F2A films showed the best compromise between performance and sustainability and presented additional antioxidant capacity. The properties of the films could be adjusted by the incorporation of agar, improving their ductility and water permeability.


Assuntos
Celulose/química , Embalagem de Alimentos , Nanocompostos/química , Vitis/química , Celulose/síntese química , Hidrólise , Nanopartículas/química , Brotos de Planta/química , Resistência à Tração , Água/química
13.
Carbohydr Polym ; 236: 115655, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172866

RESUMO

Agar-based extracts from Gelidium sesquipedale were generated by heat and combined heat-sonication, with and without the application of alkali pre-treatment. Pre-treatment yielded extracts with greater agar contents; however, it produced partial degradation of the agar, reducing its molecular weight. Sonication produced extracts with lower agar contents and decreased molecular weights. A gelation mechanism is proposed based on the rheological and small angle scattering characterization of the extracts. The formation of strong hydrogels upon cooling was caused by the association of agarose chains into double helices and bundles, the sizes of which depended on the agar purity and molecular weight. These different arrangements at the molecular scale consequently affected the mechanical performance of the obtained hydrogels. Heating of the hydrogels produced a gradual disruption of the bundles; weaker or smaller bundles were formed upon subsequent cooling, suggesting that the process was not completely reversible.

14.
Carbohydr Polym ; 233: 115887, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32059875

RESUMO

The residues generated after the extraction of agar from Gelidium sesquipedale by means of a hot-water treatment, with (NaOH+HW residue) and without (HW residue) an alkali pre-treatment have been valorized to produce high performance cellulosic films. Both residues were mainly composed of structural carbohydrates (in particular, agar), ashes and lipids. The residual agar could only be completely removed by applying a two-step process based on bleaching and alkaline treatments. The application of the alkaline pre-treatment for the extraction of agar did not significantly affect the properties of the films produced from the extracted fractions, hence making the HW residue more sustainable and economically viable. The agar remaining in the less purified fractions had a positive effect on the performance of the films, improving their transparency, mechanical properties and water vapour barrier, outperforming benchmark biopolymers; in addition, these materials presented antioxidant capacity inhibiting the degradation of ß-carotene.


Assuntos
Ágar/química , Biomassa , Celulose/química , Membranas Artificiais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Celulose/isolamento & purificação , Embalagem de Alimentos , Permeabilidade , Rodófitas/química , Água/química
15.
Nanomaterials (Basel) ; 9(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470603

RESUMO

The use of nanomaterials for food applications is a rapidly evolving field and, given the specific properties of nanomaterials and their tremendous potential, an increased number of material innovations that contribute to improved food quality and safety are foreseen [...].

16.
Carbohydr Polym ; 223: 115121, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31427011

RESUMO

Alginate microcapsules were prepared using three different alginate grades and incubated under simulated digestion conditions. Their micro- and nanostructural changes were studied using microscopy, laser diffraction and small angle X-ray scattering. Both the molecular weight and M/G ratio affected the size and nanostructural features of the capsules, but the changes in gastrointestinal conditions were mainly determined by the latter. All microcapsules swelled slightly in simulated gastric fluid (pH = 3) and swelled further in simulated intestinal fluid (pH = 7), particularly those with high mannuronic acid (M) contents. While high guluronic acid (G) beads maintained the nanostructural features characteristic of alginate gels (junction zones) in both media, these were rapidly disrupted in the M-rich capsules. Decreasing the pH of the gastric phase from 3 to 2 had dramatic structural impacts, resulting in a greater integrity of the microcapsules, thus highlighting the importance of the selected digestion protocol for rational microcapsule design.

17.
Mar Drugs ; 17(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324025

RESUMO

Posidonia oceanica waste biomass has been valorised to produce extracts by means of different methodologies and their bioactive properties have been evaluated. Water-based extracts were produced using ultrasound-assisted and hot water methods and classified according to their ethanol-affinity (E1: ethanol soluble; E2: non-soluble). Moreover, a conventional protocol with organic solvents was applied, yielding E3 extracts. Compositional and structural characterization confirmed that while E1 and E3 extracts were mainly composed of minerals and lipids, respectively, E2 extracts were a mixture of minerals, proteins and carbohydrates. All the extracts showed remarkably high antioxidant capacity, which was not only related to phenolic compounds but also to the presence of proteins and polysaccharides. All E2 and E3 extracts inhibited the growth of several foodborne fungi, while only E3 extracts decreased substantially the infectivity of feline calicivirus and murine norovirus. These results show the potential of P. oceanica waste biomass for the production of bioactive extracts.


Assuntos
Alismatales/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacocinética , Animais , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Biomassa , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/virologia , Calicivirus Felino/efeitos dos fármacos , Gatos , Etanol/química , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos , Lipídeos/química , Lipídeos/isolamento & purificação , Lipídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/farmacologia , Células RAW 264.7 , Solventes/química , Água/química
18.
Carbohydr Polym ; 216: 180-188, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31047055

RESUMO

In this work, the effects of relative humidity (RH) pre-conditioning (53% vs. 85% RH) and incorporation of cellulose fillers (from Posidonia waste biomass) on the properties and retrogradation of melt compounded starch biocomposites were investigated. Pre-conditioning at 85% RH promoted starch gelatinization during processing, leading to more amorphous materials with reduced stiffness but better barrier properties. Furthermore, these films were less stable upon storage due to greater starch retrogradation. Cellulose incorporation improved significantly the mechanical and water barrier performance, especially in the films pre-conditioned at 85% RH due to enhanced filler dispersion. Although incomplete gelatinization of the starch pre-conditioned at 53% RH led to films with bigger cellulose aggregates, their mechanical and water barrier properties were better, outperforming starch-cellulose biocomposites typically reported in the literature. Moreover, the presence of cellulose limited the degree of starch retrogradation upon storage, highlighting the potential of Posidonia biomass as a cheap source of high-performance fillers.


Assuntos
Biomassa , Celulose/química , Amido/química , Alismatales/química , Celulose/isolamento & purificação , Módulo de Elasticidade , Congelamento , Membranas Artificiais , Permeabilidade , Folhas de Planta/química , Vapor , Temperatura , Resistência à Tração , Água/química , Zea mays/química
19.
Food Chem ; 282: 58-66, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711106

RESUMO

The adsorption capacity of principal phenolic compounds onto cell walls from three apple varieties was investigated. Isothermal adsorption modelled with Langmuir, Freundlich and Redlich-Peterson equations were carried out over a range of concentrations from 0.5 to 30 mM before and after cell walls were subjected to boiling, oven-drying or freeze-drying. The isotherm data were best fitted by the Langmuir model in all cases. Polyphenols selectively adsorbed onto cell walls with maximum binding capacities ranging from 140 to 580 µg/mg cell walls depending on surface charge. Increased pectin in apple cell walls caused a 129%-311% decrease in the adsorption of negatively charged polyphenols, presumably due to electrostatic repulsive forces. Boiling had limited effect on cell wall polysaccharides and polyphenol-cell wall interactions. However, more than twofold reduction in binding capacities of polyphenols was induced after drying by altering the structural (i.e. binding sites) and compositional (i.e. pectin degradation) characteristics of cell walls.


Assuntos
Parede Celular/química , Malus/química , Polifenóis/química , Adsorção , Dessecação , Liofilização , Calefação , Malus/metabolismo , Pectinas/química , Polissacarídeos/química , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
20.
Carbohydr Polym ; 199: 276-285, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30143130

RESUMO

This work reports on the valorization of the biomass from the aquatic invasive species Arundo donax for the extraction of lignocellulosic fractions and the development of films with interest in food packaging. Stems and leaves were separately evaluated, with the stems producing higher yields and better properties for the extracted fractions. The purification of cellulose by removing hemicelluloses led to more crystalline and thermally stable fractions, which were more homogeneously dispersed in water and produced films with enhanced transparency, mechanical and water barrier properties. The application of a simplified extraction protocol, avoiding the use of organic solvents, led to the presence of minor amounts of lipidic impurities in the fractions, which, surprisingly, had a positive impact in the properties of the films. In particular, the film obtained from the purified cellulose without Soxhlet treatment (F3A) outperforms biopolymeric materials such as starch and PLA in terms of mechanical and water barrier performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...